I nstruction For Use of VETRI PLAST ${ }^{\circledR}$ plastic slide for urine sedimentation

In the VETRIPLAST slide (plastic slide with 10 cells) with counting grid, the microscopic counting of the cells present in the urine sediment, is based on the same principle of the glass counting chambers actually present on the market (Bürker, Thoma-Zeiss, Neubauer).
The above mentioned counting chambers determine, through appropriate calculations, the number of the elements per ml, present in a sample of urine.
The surface on which the samples is spread in the chamber is divided in spaces defined by a grid.
Inside of the squares, the volume of the samples is predetermined and consequently, through calculation procedures, there is a direct connection between the number of cells counted on the squares and its amount in the quantity of the urine under examination.

The possibility of error in the cell counting of the urine sediment through the above mentioned chambers could be the following:

MATERIAL	a) non calibrated pipettes b) defective counting chambers c) cover glasses wrongly positioned or of bad quality
Error depending on:	TECNIQUE
	d) defective sampling e) defective pipetting f) defective mixing g) samples drying
	OPERATOR
	h) differences between operators
i) operator with tired sight	

VETRIPLAST is different from the traditional glass counting chamber for its easiness in the use; it helps the operator in the daily routine, decreases drastically some possible causes of error with the use of the chambers. VETRIPLAST increases the quality respect to the other plastic chambers thanks to the unique patented plastic grid. The total absence of thickness permits an homogeneous distribution of the elements on the counting grid.
In the VETRIPLAST the volume of the samples limited by the grid is pre-determined and constant in all the cells (every slide is subject to strict quality controls during the production).

The area delimited by the grid is 3 mm by 3 mm divided in 9 squares with a side of 1 mm , defined by a double line. Every square of 1 mm side is also divided in 9 small squares with a side of $0,333 \mathrm{~mm}$, defined by a single line.
Every grid is divided in 81 small squares with a side of $0,333 \mathrm{~mm}$.
In this way it is obtained a precise subdivision of the sample value on the grid.
$0,9 \mathrm{ul}$ on the whole counting grid
$0,1 \mathrm{ul} \quad$ inside of each of the 9 squares of $1 \times 1 \mathrm{~mm}$ side
$0,0111 \mathrm{ul}$ inside of each of the 9 small squares of $0,333 \times 0,333 \mathrm{~mm}$ side

Features of VETRIPLAST slide:

1) reduces the number of glass slides to be prepared;
2) avoids the use of defective counting chambers;
3) no need to put a cover glass avoiding every error;
4) ensures the precision of the sample volume inside every chamber and every grid;
5) permits a quick examination of the sample, avoiding the possibility of drying;
6) reduces the possibility of overcrowding of the cells.

DIRECTIONS FOR 10 ML CENTRIFUGED URINE SAMPLES

- After having sufficiently stirred the sample of urine, pour 10 ml into a tapered test tube (code 18304);
- centrifuge for 5 minutes at 1000-1500 rpm.
- Pour off 9 ml of the top fluid;
- Suspend the sediment again, sufficiently stirring the test tube;
- Collect the sample with a Pasteur capillary pipette and fill the selected cell on the slide.
- Individuate the grid position at 100 magnifications and then read at 400 magnification. The field of reading will include the smallest square of the grid $(0,333 \times 0,333 \mathrm{~mm}$ side $)$.

Formula

to obtain number of cell per $\boldsymbol{\mu l}$ of urine
n * 1000
---------------- = Tml
k*N*CF
to obtain number of cell per $\mathbf{m l}$ of urine
where:
$\mathrm{n}=$ total number of cells counted
$k=0,01111$
$\mathrm{N}=$ number of circles observed
$T_{\mu}=$ total of cells present in 1μ l of urine
$\mathrm{T}_{\mathrm{ml}}=$ total of cells present in 1 ml of urine
$C F=$ concentration factor (10 for centrifuged urine samples)

DIRECTIONS FOR 10 ML NON CENTRIFUGED URINE SAMPLES

- Collect the sample with a Pasteur capillary pipette and fill the selected cell on the slide.
- Individuate the grid position at 100 magnifications and then read at 400 magnification. The field of reading will include the smallest square of the grid $(0,333 \times 0,333 \mathrm{~mm}$ side $)$.

Formula

n
k * N
to obtain number of cell per $\boldsymbol{\mu l}$ of urine

to obtain number of cell per $\mathbf{~ m l}$ of urine
where:
$\mathrm{n}=$ total number of cells counted
$k=0,01111$
$\mathrm{N}=$ number of circles observed
$T_{\mu}=$ total of cells present in 1μ of urine
$\mathrm{T}_{\mathrm{ml}}=$ total of cells present in 1 ml of urine

VACUTETEST*

HIGH PRESENCE OF ELEMENTS

Count the number of elements present in 5 different squares, taking care not to count twice the same position.
(example n. 1)

Example no. 1

The total number of elements per uL or mL can be obtained using the "table 1 " here below.
Table no. 1

Total number of elements counted in 5 squares	N° of elements present in $1 \mathbf{u l}$ of centrifuged urine 1:10	N° of elements present in 1 ul of NON centrifuged urine	N° of elements present in 1 ml of centrifuged urine 1:10	N° of elements present in 1 ml of NON centrifuged urine	Total number of elements counted in 5 squares	N° of elements present in 1 ul of centrifuged urine 1:10	N° of elements present in 1 ul of NON centrifuged urine	N° of elements present in 1 ml of centrifuged urine 1:10	N° of elements present in 1 ml of NON centrifuged urine
1	2	18	1800	18000	35	63	630	63000	6300000
2	4	36	3600	36000	40	72	720	72000	7200000
3	5	54	5400	54000	45	81	810	81000	8100000
4	7	72	7200	72000	50	90	900	90000	9000000
5	9	90	9000	90000	55	99	990	99000	9900000
6	11	108	10800	108000	60	108	1080	108000	1080000
7	13	126	12600	126000	65	117	1170	117000	1170000
8	14	144	14400	144000	70	126	1260	126000	1260000
9	16	162	16200	162000	75	135	1350	135000	1350000
10	18	180	18000	180000	80	144	1440	144000	1440000
12	22	216	21600	216000	85	153	1530	153000	1530000
14	25	252	25200	252000	90	162	1620	162000	1620000
18	32	324	32400	324000	95	171	1710	171000	1710000
20	36	360	36000	360000	100	180	1800	180000	1800000
25	45	450	45000	450000	105	189	1890	189000	1890000
30	54	540	54000	540000	110	198	1980	198000	1980000

LOW PRESENCE OF ELEMENTS

Count the number of elements present in 10 different squares, taking care not to count twice the same position. (example no. 2)

Example n. 2

VACUTEST•

The total number of elements per uL or mL can be obtained using the "table 2 " here below.
Table no. 2

Total number of elements counted in 10 squares	N° of elements present in $1 \mathbf{u l}$ of centrifuged urine 1:10	N° of elements present in 1 ul of NON centrifuged urine	N° of elements present in $1 \mathbf{~ m l}$ of centrifuged urine 1:10	N° of elements present in 1 ml of NON centrifuged urine	Total number of elements counted in 10 squares	N° of elements present in $1 \mathbf{u l}$ of centrifuged urine 1:10	N° of elements present in 1 ul of NON centrifuged urine	N° of elements present in 1 ml of centrifuged urine 1:10	N° of elements present in 1 ml of NON centrifuged urine
1	1	9	900	9000	35	31	320	31500	315000
2	2	18	1800	18000	40	36	360	36000	360000
3	3	27	2700	27000	45	40	405	40500	405000
4	4	36	3600	36000	50	45	450	45000	450000
5	5	45	4500	45000	55	50	500	49500	495000
6	5	54	5400	54000	60	54	540	54000	540000
7	6	63	6300	63000	65	59	590	58500	585000
8	7	72	7200	72000	70	63	630	63000	630000
9	8	81	8100	81000	75	68	680	67500	675000
10	9	90	9000	90000	80	72	720	72000	720000
12	11	108	10800	108000	85	77	770	76500	765000
14	13	126	12600	126000	90	81	810	81000	810000
18	16	162	16200	162000	95	86	860	85500	855000
20	18	180	18000	180000	100	90	900	90000	900000
25	23	225	22500	225000	105	95	950	94500	945000
30	27	270	27000	270000	110	99	990	99000	990000

Technical data

REF 211710	"VETRIPLAST"® square grid.
Destination of use: For cytological urine tests.	
Composition material of the device: Polymethylmethacrylate (PMMA)	
Outer grid sizes: $3 \times 3 \mathbf{~ m m}$	
Small grid sizes: $0,333 \times 0,333 \mathbf{~ m m}$	
Small grid volume: $0,0111 \mathbf{u L}$	
Chamber depth $0,1 \mathbf{~ m m}$	

